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Abstract

In this preliminary report, a multi-region radial integration is compared to

the recently proposed method due to Handy et al.. Preliminary results for small

systems indicate that the new integration scheme is generally comparable to

and sometimes better than that of Handy et al., although this conclusion is by

no means firm. Work for larger systems is continuing.
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1 Introduction

There is recently a great deal of interest in the testing and application of Density

Functional techniques for use in molecular calculations. The complicated functional

forms used in this theory preclude analytical integration, so that numerical methods

must be used. Recently, Handy et a/.[1] proposed a radial integration based on the

Euler-Maclaurin summation giving good results for a number of systems. However,

it is worthwhile investigating other methods since for accurate calculations many

quadrature points are required in general, even with the Euler-Maclaurin technique.

In addition, on problem with the Euler-Maclaurin scheme is that there is little control

over the location of additional quadrature points. For example, this scheme is very

efficient for atoms, but in a molecular context additional points are required for an

integration which is comparable to the atomic case. These additional points should

ideally be placed in the valence region. However, with the Euler-Maclaurin scheme

points must be placed throughout the entire region. This problem is bypassed with

a multiregion integration.

The advantage of the multiregion integration is the control of the placement

of additional quadrature points in the molecular situation. In general, we determine

an accurate quadrature for the constituent atoms or small molecular fragments. In

the molecular situation we then only need to add points to the valence region(s), and

increase the accuracy of the angular quadrature, in order to be able to produce an

accurate molecular quadrature. One disadvantage of the multiregion integration is

a possible increase in errors due to the accumulation of errors from the individual

regions.

Here we investigate the efficiency of a multi-region integration similar to that

previously proposed by Te Velde and Baerends [2] and also Thakar [3]. One difference

in the current work is the use of a change of variables due to McLean and Yoshimine [4]

which allows for efficient placement of the quadrature points by mapping the region

[a, m, b] onto the region [-1,0, 1], where a and b are the endpoints of the region, and

m is any point between a and b. This mapping takes the form

x = c_ + c2(1 +/_)/(1 - fit).

The constants cl, c2 and /_ are completely determined by the mapping a --. -1,

ra --, 0, and b --* 1. This mapping may be used for all ranges except the doubly

infinite range (-cx_, oo), providing appropriate limiting forms are used for special cases.

The regions used here are based on the atomic charge density, in a spirit similar
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to that used by Thakar [3]. However, rather than using a general rule based on the

atomic number by which to determine the regions, we use the atomic charge density

directly. The function r 2 * p(r) is generated numerically, and analysed for maxima,

minima and points of inflection. In general, the regions we define are based on these

points, in particular the points a and b map onto two minima in the charge density,

and the point m maps onto the maximum in between these. These three points define

a shell, and the mapping ensures an optimal distribution of quadrature points in the

region. Generally we have one region for each shell, with the valence shell being split

into an inner and outer parts at the point of inflection of the valence shell (see also

Thakar), and the innermost (core) region into two at the first point of inflection.

Although this scheme may seem somewhat complicated, in fact it is straightforward

to generate the required regions and tabulate them for any atom.

For the inner regions we use a standard Gauss-Legendre quadrature, whereas

for the outer region we use a shifted Gauss-Laguerre scheme based on the weight

function e -_r, where a is related to the highest occupied MO eigenvalue (or the IP)

by a = 2(_) (see also Thakar [3]).

The other details of the integration are very similar to that proposed by

Handy et al. [1]. We use a product scheme for the angular integration identical

to that of Handy et aI., including the use of the angular crowding parameter K0. The

single center integration scheme of Becke [5] is used, but we use the cutoff function

due to Handy et al., with standard Bragg-Slater radii.

We consider three systems here - Ne, Cu and CO. We compare the Euler-

Maclaurin to the current multiregion integration for all four systems. We consider

integration of the total charge density only here, at the SCF level of approxima-

tion, since Handy et al. [1] showed that this gives a good indication of the overall

performance of an integration scheme. For Ne, we use the Dunning [6] [5s4p] con-

tracted Gaussian basis set. For carbon and oxygen we use the correlation consistent

polarized valence triple zeta (cc-pVTZ) basis sets of Dunning. For Cu we use a

(20s 15p 10d 6f 4g)/[6 + ls 5 + lp 4d 2f lg] basis set derived from the large primi-

tive set of Partridge [7], contracted by Bauschlicher using the atomic natural orbital

(ANO) approach. The C-O bond length is 2.2 a.u. in all cases.

The calculations were carried out using the Seward integral program and the

Sweden SCF program on the Cray YMP-C90 at NASA Ames research center.



2 Results and Discussion

For Ne atom, the results for the Euler-Maclaurin integration are given in Table 1.

We give the number of points used in the radial integration, the number of points

including those discarded due to the radial cutoff (in parentheses), the radial factor

mr (Handy et al. [1], Eqn. 6), and the total error in the integrated charge density.

Our results for this are very similar to Handy et al., as expected, with a very accurate

radial integration attained with 72 radial points. In Table 2, we give the results from

the multiregion integration, with the number of points in each region given. In region

5 we also indicate the number of points including those discarded due to the radial

cutoff, in parentheses. Overall, more radial points are required for the multi-region

integration, although the integration is still accurate. For example, if one used a

value for mr in the Euler-Maclaurin integration which was not optimal, then the

results could be worse than for the multi-region integration.

In Table 3, we give the results for the integration of Cu atom in a large ANO

basis set, for three different numbers of radial points. One trend to be noted is that a

higher mr value is needed for Cu than Ne as more radial points are added, and more

radial points are needed to achieve a similar absolute accuracy. As noted by Handy et

al. this is because the numerical integration only gives a certain relative error rather

than absolute error in the integration. We note that for Cu atom (4s 1) it is necessary

to integrate out a long way (22 a.u.) due to the very diffuse nature of the 4s orbital,

and that sometimes a higher value of mr can be necessary than that recommended

than Handy et al. to obtain optimum results.

The multi-region results of Tables 4 and 5 compare quite well with the Euler-

Maclaurin results, although again it seems that more points are necessary for the

multi-region scheme, depending on the rn, value used for in the Euler-Maclaurin

scheme. We note that the inner regions for the multi-region scheme are very compact,

due to the higher atomic number in this case, and that quite a few radial points are

necessary to describe the density accurately in this compact region. However, this

does not necessarily translate to a lot of points in a molecular calculation, since the

number of angular points needed in the inner regions is much smaller than in the

valence regions.

Finally we consider the CO molecule (Tables 6-8). We use the same num-

ber of angular points in for the Euler-Maclanrin and the multi-region integrations

(n0=42, n_=84), and the same Bragg-Slater radii in each case (rc=1.32281 a.u.,

ro=1.13383 a.u.). Overall, it seems that it is possible for the Euler-Maclaurin scheme



to outperform the multi-radial schemeif the right valuesof m, and m u (the angular

factor [1]) are chosen. However, these differ significantly from the "standard" values

recommended by Handy et al., m,=2 or 3 and m,=10 or 11. For these values, we

see that the multi-region scheme is either equivalent to or better than the Euler-

Maclaurin scheme in efficiency. Another interesting point from Tables 6 and 8 is that

it is not just the total number of radial points which is important, but also the spread

of these points along r, as this affects the total number of points through the angular

factors. For example, the spread of radial points in the Euler-Maclaurin scheme is

approximately linear on a logarithmic scale, apart from the very short and long range

regions. Changing the factor mr changes the slope of this logarithmic plot, so that

for higher values of mr there are more points in the core region and more points in

the long range regions, leading to fewer points overall, since there are fewer angular

points in the core region and the long range points are discarded due to the radial

cutoff. Thus for the Euler-Maclaurin scheme, very different total numbers of points

are realized for m,=3 versus m,=4, even though the nominal number of radial points

is the same in each case.

For the multi-region scheme, two sets of results are presented for CO (Table 8),

differing in the number of points in the valence and outer regions, and with the total

number of points being very comparable to the best results found for the Euler-

Maclaurin scheme. One advantage of the multi-region scheme is that we are able to

take a set of integration parameters from a similar atom (for example, those for Ne in

this case), and then place more radial points in the valence and outer valence regions

in order to attain higher accuracy. This can be seen to be an effective way to add

points for CO.

Overall, it seems that neither integration scheme is clearly superior in the

molecular situation, based on the current results. More and larger systems need to

be studied in order to establish whether the multi-region integration scheme proposed

here is significantly better to the widely used Euler-Maclaurin scheme of Handy et

at.Ill

3 Acknowledgements

L.A.B was supported by NASA grant number NCC-2-741. Helpful discussions with

D. W. Schwenke, H. Partridge and A. D. McLean axe acknowledged. The provision of

a subroutine to facilitate the McLean-Yoshimine change of variable by A. D. McLean

is acknowledged.

5



References

[1] C. W. Murray, N. C. Handy, and G. J. Laming, Mol. Phys. 78, 997 (1993).

[2] G. Te Velde and E. J. Baerends, J. Comp. Phys. 99, 84 (1992).

[3] A. J. Thakar, Phys. Rev. A 46, 6920 (1992).

[4] A. D. McLean and M. Yoshimine, IBM Journal of Research and Development 9,

203 (1965).

[5] A. D. Becke, J. Chem. Phys. 88, 2547 (1988).

[6] T. H. Dunning, Jr., J. Chem. Phys. 53, 2823 (1970).

[7] H. Partridge, J. Chem. Phys. 90, 1043 (1989).



Table 1: Euler-Maclaurinintegration of Neatom (rm_=15.0 a.u.)

66(70) 1 3.0x10-5
56(70) 2 3.1x10-1°
50(70) 3 8.8x10-1°
47(70) 4 7.1x10-7

94(100) 1 6.6x10-6
72(100) 2 9.1x10-13
80(100) 3 3.8x10TM

67(100) 4 9.1x10 TM

Table 2: Multiregion integration of Ne atom (rm..=15.0 a.u.)

1 2

nr (region) Total nr

3 4 5

i0 15 12 16 3(3) 56(56)

15 20 24 24 11(16) 94(99)

ap(r)



Table 3: Euler-Maclaurin integration of Cu atom (rm_.=22.0 a.u.)

47(64) 2 6.0x10 -6

43(64) 3 6.4x10 -s

40(64) 4 7.6x10 -6

71(96) 2 5.2x10 -9

64(96) 3 1.4x10 -1°

60(96) 4 4.4x10 -1°

95(128) 2 6.5x10 -9

86(128) 3 4.9x10 -12

80(128) 4 1.1x10 -13

77(128) 5 1.1xlO -1°

Table 4: Regions for Cn atom (a.u.)

a m b

1 0.000 0.005 0.010

2 0.010 0.038 0.077

3 0.077 0.170 0.380

4 0.380 0.630 0.940

5 0.940 2.500 6.000

6 6.000 -- 22.000



Table 5: Multiregion integration of Cu atom (rm,_=22.0a.u.)

n,(region) Total nr Ap(r)

1 2 3 4 5 6

15 15 15 10 20 15(9) 84(90) 2.2x10 -9

20 15 15 10 20 11(20) 91(100) 6.7x10 -1'

25 20 20 15 25 11(20) 117(130) 1.4x10 -12
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Table 6: Euler-Maclaurin integration of CO molecule (n0=42,

radbs=l.32281,1.13383 a.u. n¢=84, rm_=15.0 a.u.). Note: same value of m u and mr

used for C and O.

nr N_d mr m u Ap(r)

132,134 (192,192) 60902,62666 3 10 1.3x10 -9

132,134 (192,192) 60902,62666 3 11 3.0x10 -1°

132,134 (192,192) 60902,62666 3 12 2.8x10 -ix

132,134 (192,192) 60902,62666 3 13 9.8x10 -12

132,134 (192,192) 60902,62666 3 14 2.5x10 -H

148,150 (192,192) 87162,88926 2 10 2.1xl0 -l°

148,150 (192,192) 87162,88926 2 11 8.7x10 -11

148,150 (192,192) 87162,88926 2 12 3.9x10 -11

148,150 (192,192) 87162,88926 2 13 2.2x10 -ix

148,150 (192,192) 87162,88926 2 14 1.6x10 -11

148,150 (192,192) 87162,88926 2 15 1.7x10 -1_

124,125 (192,192) 47228,48110 4 11 8.7x10 -9

124,125 (192,192) 47228,48110 4 12 5.4x10 -9

124,125 (192,192) 47228,48110 4 13 1.8x10 -9

124,125 (192,192) 47228,48110 4 14 5.2x10 -1°

124,125 (192,192) 47228,48110 4 15 1.5x10 -9
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Table 7: Regionsfor CO molecule(a.u.)

a m b

C

1 0.00 0.025 0.05

2 0.05 0.17 0.63

3 0.63 1.27 1.90

4 1.90 4.0 6.0

5 6.0 -- 15.0

0

1 0.0 0.02 0.04

2 0.04 0.12 0.41

3 0.41 0.83 1.37

4 1.37 4.0 6.0

5 6.0 -- 15.0
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Table 8: Multiregion integration of CO molecule(rm_,=15.0a.u.)

nr (region) Total n_ Ngria m u Ap(r)

1 2 3 4 5

15 20 24 24 7(16) 90(99) 58078,56944 12 3.0x10 -9

15 20 24 24 7(16) 90(99) 58078,56944 13 1.0xl0 -'°

15 20 24 24 7(16) 90(99) 58078,56944 14 1.4x10 -9

15 20 24 24 9(24) 92(107) 59842,58708 13 8.3x10 -ix

15 20 24 24 11(32) 94(115) 61606,60472 13 8.3x10 -al

15 20 24 32 9(24) 100(115) 66898,65764 13 5.7x10 -11

15 20 24 40 9(24) 108(123) 73954,72820 13 1.0xl0 -la

15 20 24 40 9(24) 108(123) 73954,72820 12 1.4X10 -11

15 20 24 40 9(24) 108(123) 73954,72820 14 1.2X10 -xx
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